R/basis.R
ilr_basis.Rd
By default the basis of the clr-given by Egozcue et al., 2013 Build an isometric log-ratio basis for a composition with k+1 parts $$h_i = \sqrt{\frac{i}{i+1}} \log\frac{\sqrt[i]{\prod_{j=1}^i x_j}}{x_{i+1}}$$ for \(i \in 1\ldots k\).
ilr_basis(dim, type = "default")
olr_basis(dim, type = "default")
number of components
if different than `pivot` (pivot balances) or `cdp` (codapack balances) default balances are returned, which computes a triangular Helmert matrix as defined by Egozcue et al., 2013.
matrix
Modifying parameter type (pivot or cdp) other ilr/olr basis can be generated
Egozcue, J.J., Pawlowsky-Glahn, V., Mateu-Figueras, G. and Barceló-Vidal C. (2003). Isometric logratio transformations for compositional data analysis. Mathematical Geology, 35(3) 279-300
ilr_basis(5)
#> ilr1 ilr2 ilr3 ilr4
#> c1 0.7071068 0.4082483 0.2886751 0.2236068
#> c2 -0.7071068 0.4082483 0.2886751 0.2236068
#> c3 0.0000000 -0.8164966 0.2886751 0.2236068
#> c4 0.0000000 0.0000000 -0.8660254 0.2236068
#> c5 0.0000000 0.0000000 0.0000000 -0.8944272